1	(a	(i)	(i) 6e between two nitrogen atoms; note: can be any combination of dots or crosses 1 lone pair on each nitrogen atom;			[1] [1]
		(ii)		solid	gas	
			pattern:	regular / lattice	random / irregular / no pattern;	[1]
			distance:	close	far apart / spread out;	[1]
			movement:	vibrate / fixed position	moving;	[1]
			note: comparis	son must be made		
	(b)	(b) particles have more energy / move faster; collide harder / collide more frequently / more collisions / collide with more force; allow: molecules instead of particles				[1] [1]
	(c)	(c) (i) nitrogen has smaller M _r ; nitrogen (molecules) move faster (than chlorine molecules) / ora; note: comparison must be made				
		(ii)	(at higher tem	perature) molecules move fa	ster / have more energy	[1]

Question	Answer	Mar	ks
2(a)(i)	$NH_3 + HCl \rightarrow NH_4Cl;$		1
2(a)(ii)	di		1
2(a)(iii)	solid forms at: A; explanation: ammonia molecules/particles have a smaller mass; (and so) move/diffuse faster;	1 2	3
2(a)(iv)	M1 solid forms in less time/faster/quicker; M2 particles/molecules have more energy; M3 (and so) move faster/diffuse faster;	1 1 1	3
2(b)(i)	test: add sodium hydroxide (solution and warm); result: test gas/ammonia with (red) litmus/Universal Indicator/pH paper; indicator turns blue/ammonia produced;	1 2	3
2(b)(ii)	test: add silver nitrate (solution); result: add (dilute) nitric acid; white precipitate;	1 2	3

Question	Answer	Marks
2(c)(i)	cov	1
2(c)(ii)	 M1 one shared pair of electrons between each N and H; M2 one shared pair of electrons between the N atoms; M3 one lone pair on each N and no additional electrons anywhere; 	3 1 1 1
(d)(i)		1
2(d)(ii)	proteins are made from more than two monomers; OR nylon is made from 1 or 2 monomers (only);	1
2(d)(iii)	acids;	1
2(e)	H — N — OH	1

(b) (i) 14.3 [1]
(ii)
$$85.7 \div 12$$
 and $14.3 \div 1$ or 7.14 and 14.3 [1] ratio 1:2 [1] CH_2 [1] note: Award all 3 marks for correct answer allow: alternative working e.g. $85.7 \times 84 \div 100$ and $14.3 \times 84 \div 100$ or $71.988/72$ and $12/12.012$ [1] $6:12$ or ratio 1:2 [1] CH_2 [1] (iii) C_6H_{12} [1]

- 4 (a (i) (particles) spread to fill total available volume/move from high concentration to low concentration/moves down a concentration gradient (1)
 - (ii) mass or M_r (1)
 - (b) helium atoms/molecules are lighter than molecules in air or N_2 and O_2 or helium is less dense than air or N^2 and O_2 .

 or helium diffuses (through the porous barrier) faster than air or N^2 and O_2 . (1)

- (ii) faster rate of diffusion/molecules move faster (at high temperatures). (1) [1]
- (c) (i) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ (1) [1]
 - (ii) would get a mixture of helium and carbon dioxide
 or would get a mixture of gases
 or waste of methane/natural gas/fossil fuel (1)

 [1]
 - (iii) <u>fractional</u> distillation (1) [1]

[Total: 7]

[1]

```
(a any three from: particles have more energy (1) move faster (1) collide more frequently (1) more particles have energy greater than E<sub>a</sub> guidance: more colliding molecules have enough energy to react is worth (2)
(b) particles move in all directions/randomly in both liquids and gases (1) no bonds/very weak forces between particles in gases (1) molecules can move apart/separate (to fill entire volume) (1) OR bonds/forces/IMF between particles in liquids (1) molecules cannot move apart/separate (so fixed volume in liquids) (1) [3]
```

6	(a	liquid;	[1]
	(b)	(I) and (s); reversible sign; accept: X in equation ignore: any compounds just look for state symbols must be the same compound on both sides of equation	[1] [1]
	(c)	boiling / condensation; accept: evaporation or vaporisation	[1]
	(d)	(in region BC) solid melts / liquid boils (in region DE); at one / fixed / sharp / single / specific temperature;	[1] [1]
			[Total: 6]